翻訳と辞書
Words near each other
・ Allegiant (novel)
・ Allegiant Air
・ Allegiant Air destinations
・ Allegiant Athletic Agency
・ Allegion
・ Allegis Group
・ Allegorical interpretation of the Bible
・ Allegorical interpretations of Genesis
・ Allegorical interpretations of Plato
・ Allegorical Misunderstanding
・ Allegorical representations of Argentina
・ Allegorical sculpture
・ Allegories (Bellini)
・ Allegoriya
・ Allegory
Allegory (category theory)
・ Allegory (Filippino Lippi)
・ Allegory and Self
・ Allegory in Renaissance literature
・ Allegory in the Middle Ages
・ Allegory of Divine Providence and Barberini Power (Cortona)
・ Allegory of Fortune
・ Allegory of Gluttony and Lust
・ Allegory of Hispania
・ Allegory of Industry
・ Allegory of Isabella d'Este's Coronation
・ Allegory of Prudence
・ Allegory of the Battle of Lepanto
・ Allegory of the Cave
・ Allegory of the Element Earth


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Allegory (category theory) : ウィキペディア英語版
Allegory (category theory)
In the mathematical field category theory, an allegory is a category that has some of the structure of the category of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as exact completions.
In this article we adopt the convention that morphisms compose from right to left, so ''RS'' means "first do ''S'', then do ''R''".
==Definition==

An allegory is a category in which
* every morphism ''R'':''X→Y'' is associated with an anti-involution, i.e. a morphism ''R''°:''Y→X''; and
* every pair of morphisms ''R'',''S'':''X''→''Y'' with common domain/codomain is associated with an intersection, i.e. a morphism ''R''∩''S'':''X''→''Y''
all such that
* intersections are idempotent (''R''∩''R''=''R''), commutative (''R''∩''S''=''S''∩''R''), and associative (''R''∩''S'')∩''T''=''R''∩(''S''∩''T'');
* anti-involution distributes over composition ((''RS'')°=''S''°''R''°) and intersection ((''R''∩''S'')°=''S''°∩''R''°);
* composition is semi-distributive over intersection (''R''(''S''∩''T'')⊆''RS''∩''RT'', (''R''∩''S'')''T''⊆''RT''∩''ST''); and
* the modularity law is satisfied: (''RS''∩''T''⊆(''R''∩''TS''°)''S'').
Here, we are abbreviating using the order defined by the intersection: "''R''⊆''S''" means "''R''=''R''∩''S''".
A first example of an allegory is the category of sets and relations. The objects of this allegory are sets, and a morphism ''X→Y'' is a binary relation between ''X'' and ''Y''. Composition of morphisms is composition of relations; intersection of morphisms is intersection of relations.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Allegory (category theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.